Comparison of time series forecasting methods for automotive spare parts demand

Authors

DOI:

https://doi.org/10.33064/iycuaa2025945451

Keywords:

demand forecast, spare parts, demand patterns, supply chain, time series

Abstract

The inevitable need for companies in the automotive spare parts sector to forecast their production levels is the basis for the development of this work. This article shows a probabilistic analysis of the demand of three Mexican auto parts companies focused on production and sale at a national and international level. 312 time series were analyzed based on the monthly historical demand by applying forecasting methods such as moving averages, Winters, multiplicative decomposition, ARIMA (Box - Jenkis), Croston, and Syntetos-Boylan Approximation (SBA) to find the best goodness-of-fit measure. The performance of each method was evaluated through the absolute percentage error (MAPE) and the mean squared error (MSE). The results showed a reduction of 60.77% of MAPE in the smooth pattern and 70.60% in the erratic. This research contributes to the literature of auto parts sector to support decision making.

Downloads

Download data is not yet available.

Author Biographies

Master, Universidad Autónoma del Estado de México

Erika Montes de Oca Sánchez earned her bachelor in Mechatronic Engineering in the Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Toluca, Mexico. She studied a master degree in Supply Chain Engineering with honors at the Autonomous University of Mexico State. In this master, she got a scholarship by the National Council of Science and Technology of Mexico (CONACYT). She was an internship and worked in Automotive Industry as a Process Engineer and a Group Leader of Production.

Lourdes Loza-Hernández, Universidad Autónoma del Estado de México

Departamento de Posgrado, Facultad de Ingeniería

References

• Alalawin, A., Arabiyat, L. M., Alalaween, W., Qamar, A., y Mukattash, A. (2021). Forecasting vehicle’s spare parts price and demand. Journal of Quality in Maintenance Engineering, 27(3), 483–499. doi: 10.1108/JQME-03-2020-0019

• Altay, N., Rudisill, F., y Litteral, L. (2008). Adapting Wright’s modification of Holt’s method to forecasting intermittent demand. International Journal of Production Economics, 111, 389–408. doi: 10.1016/j.ijpe.2007.01.009

• Anderson, D.R., Sweeney, D. J., y Williams, T. A. (2008). Estadística para Administración y Economía (10. ed.). Cengage Learning Latin America Editorial.

• Axsäter, S. (2006). Inventory Control (3. ed). New York: Springer Science.

• Balderas, S. N. (2021). Industria de autopartes, con potencial para crecer más de 35% después de la crisis. Transportes y Turismo. Recuperado de: https://www.tyt.com.mx/nota/industria-de-autopartes-con-potencial-para-crecer-mas-de-35-despues-de-la-crisis

• Box, G. E. P. y Cox, D. R. (1964). An Analysis of Transformations. Journal of the Royal Statistical Society, Series B, 26(2), 211–252. Recuperado de: http://www.jstor.org/stable/2984418

• Boylan, J.E. y Syntetos, A. A. (2007). Forecasting for Inventory Management of Service Parts. Complex System Maintenance Handbook, 20. doi: 10.1007/978-1-84800-011-7

• Bucher, D. y Meissner, J. (2011). Configuring Single-Echelon Systems Using Demand Categorization. Service Parts Management, 203–219. London: Springer

• Chapman, S. N. (2006). Planificación y Control de la producción. México: Pearson.

• Chatras, C., Giard, V., y Sali, M. (2015). High variety impacts on Master Production Schedule: a case study from the automotive industry. IFAC-PapersOnLine, 48(3) 1073–1078. doi: 10.1016/j.ifacol.2015.06.226

• Chopra, S. y Meindl, P. (2008). Administración de la Cadena de Suministro (4.ed). México: Pearson.

• Costantino, F., Di Gravio, D., Patriarca, R., y Petrella, L. (2017). Spare parts management for irregular demand items. Omega Editorial. doi: 10.1016/j.omega.2017.09.009

• Croston, J. D. (1972). Forecasting and stock control for intermittent demands. Journal of Operational Research Society, 23(3), 289–303.

• Csorba, I. (2007). The Forecast-Centric Enterprise. Journal Business Forecasting, 26(2), 23.

• Diaz, D. A. B., Hennequin, S., y Roy, D. (2020). Spare Parts Management in the Automotive Industry Considering Sustainability. Optimization of Complex Systems: Theory, Models, Algorithms and Applications. Advances in Intelligent Systems and Computing, (1 ed.) vol. 991, Le Thi, H., Le, H.,y Pham Dinh, T., Eds. Springer, Cham: 1109–1118.

• Do Rego, J.R. y De Mesquita, M.A. (2015). Demand forecasting and inventory control: A simulation study on automotive spare parts. International Journal of Production Economics, 161,1–16. doi: 10.1016/j.ijpe.2014.11.009

• Eaves, A. y Kingsman, B. (2004). Forecasting for the ordering and stock-holding of spare parts. Journal of the Operational Research Society, 55(4), 431–437. doi: 10.1057/palgrave.jors.2601697

• Engelmeyer, T. (2016). Demand Classification. Engelmeyer, T Managing Intermittent Demand, 63–72. Springer Gabler, Wiesbaden. doi: 10.1007/978-3-658-14062-5-4

• Frechtling, D. C. (1996). Practical tourism forecasting. Oxford; Boston: Butterworth-Heinemann.

• Ghobbar, A. y Friend, C. (2003). “Evaluation of forecasting methods for intermittent parts demand in the field of aviation: A predictive model. Computing Operation Research, 30(14), 2097–2114. doi:10.1016/S0305-0548(02)00125-9

• Hellingrath, B. y Cordes, A.K. (2014). Conceptual approach for integrating condition monitoring information and spare parts forecasting methods, Production & Manufacturing Research, 2(1), 725–737. doi: 10.1080/21693277.2014.943431

• Hu, Q., Boylan, J. E., Chen, H., y Labib, A. (2017). OR in spare parts management: A review. European Journal of Operation Research, 266(2), 395-414. doi: 10.1016/j.ejor.2017.07.058

• Hua, Z., Zhang, B., Yang, J., y Tan, D. S. (2007). A new approach of forecasting intermittent demand for spare parts inventories in the process industries. Journal of the Operational Research Society, 58, 52–61. doi: 10.1057/palgrave.jors.2602119

• Hyndman, R. J. y Athanasopoulos, G. (2018). Forecasting: Principles and Practice (2. ed), OTexts: Melbourne, Australia.

• Hyndman, R. y Kostenko, A. (2007). Minimum Sample Size Requirements for Seasonal Forecasting Models. Foresight International Journal Application Forecasting, 6, 12–15.

• Industria Nacional de Autopartes, A. C. [INA]. (2018). Diálogo con la industria automotriz 2018-2024”. Agenda Automotriz. Versión 2018. Recuperado de: https://www.amda.mx/wp-content/uploads/asociaciones_2018-2024_180724.pdf

• Johnston, F.R. y Boylan, J. E. (1996). Forecasting for Items with Intermittent Demand. Journal of the Operational Research Society, 47(1), 113–121. doi: 10.1057/jors.1996.10

• Kim, S. y Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. International Journal of Forecasting, 32(3), 669–679. doi:10.1016/j.ijforecast.2015.12.003

• Kourentzes, N. (2014). On intermittent demand model optimisation and selection. International Journal of Production Economics, 156, 180–190. doi: 10.1016/j.ijpe.2014.06.007

• Kumar, P., Herbert, M., y Rao, S. (2015). Artificial Neural Network Approach To Industrial Demand Forecast. in Proceeding of 23rd The IIER International Conference Singapure, April, 25, 43–47.

• Lindsey, M. y Pavur, R. (2008). A comparison of methods for forecasting intermittent demand with increasing or decreasing probability of demand occurrences. Advances in Business and Management Forecasting, 5, K. D. Lawrence and M. D. Geurts, Eds. Emerald Group Publishing Limited: 115–132.

• Mehdizadeh, M. (2020). Integrating ABC analysis and rough set theory to control the inventories of distributor in the supply chain of auto spare parts. Computers & Industrial Engineering, 139. doi: 10.1016/j.cie.2019.01.047

• Minitab Inc. (2018). Minitab 18 Statistical Software. State College, Pennsylvania.

• Montanero Fernández, J. (2008). Modelos Lineales, 56. UEX.

• Nikolopoulos, K., Syntetos, A, Boylan, J., Petropoulos, F., y Assimakopoulos, V. (2011). An Aggregate-Disaggregate Intermittent Demand Approach (ADIDA) to Forecasting: An Empirical Proposition and Analysis. Journal of the Operational Research Society, 62(3), 544–554. doi: 10.1057/jors.2010.32

• Ortiz, P.J. y Gil, D. (2014). Transformaciones logarítmicas en regresión simple. Comunicaciones en Estadística, 7(1), 80–98. doi:10.15332/s2027-3355.2014.0001.06

• Pennings, C.L.P., Van Dalen, J., y Van Der Laan, E. A. (2007). Exploiting elapsed time for managing intermittent demand for spare parts. European Journal Operation Research, 258(3), 958–969. doi: 10.1016/j.ejor.2016.09.017

• Petropoulos, F., Kourentzes, N., y Nikolopoulos, K. (2016). Another look at estimators for intermittent demand.,” International Journal of Production Economics, Part A: 18, 154–161. doi: 10.1016/j.ijpe.2016.04.017

• Pinçe, Ç., Turrini, L., y Meissner, J. (2021). Intermittent demand forecasting for spare parts: A Critical review. Omega, 105, 102513. doi: 10.1016/j.omega.2021.102513

• Ravindran, A.R. y Warsing Jr., D. P. (2013). Supply Chain Engineering: Models and Applications, (1. ed.), Boca Raton, FL: Press, CRC.

• Ravindran, A.R. (2008). Operations Research and Management Science Handbook. Boca Raton, FL: Taylor & Francis Group.

• Romeijnders, W., Teunter, R., y Van Jaarsveld, W. (2012). A two-step method for forecasting spare parts demand using information on component repairs. European Journal of Operation Research, 220(2), 386–393. doi: 10.1016/j.ejor.2012.01.019

• Rožanec, J. M. y Mladenic, D. (2021). Reframing demand forecasting: a two-fold approach for lumpy and intermittent demand. ArXiv, abs/2103.1. doi: 10.1016/s1537-1891(09)00089-5

• Şahin, M., Kızılaslan, R., y Demirel, Ö. F. (2013). Forecasting Aviation Spare Parts Demand Using Croston Based Methods and Artificial Neural Networks. Journal of Social Economics Research, 15(2) 1–21.

• Silver, E. A., Pyke, D. F., y Thomas, D. J. (2017). Inventory and production Management in Supply Chains, Fourth. Boca Raton, FL: Taylor & Francis Group.

• Syntetos, A. A. y Boylan, J. E. (2005). The accuracy of intermittent demand estimates. International Journal of Forecasting, 21(2), 303–314. doi: 10.1016/j.ijforecast.2004.10.001

• Syntetos, A., Boylan J.E., y Croston, J. (2005). On the categorization of demand patterns. Journal of Social Economics Research, 56, 495–503. doi: 10.1057/palgrave.jors.2601841

• Syntetos, A.A., Babai, M.Z., & Altay, N. (2012). On the demand distributions of spare parts. Journal of Social Economics Research, 50(8), 2101–2117. doi: 10.1080/00207543.2011.562561.

• Teunter, R. H., y Duncan, L. (2009). Forecasting intermittent demand: a comparative study. Journal of Social Economics Research, 60(3), 321–329. doi: 10.1057/palgrave.jors.2602569.

• Teunter, R.H., Syntetos, A. A., y Babai, M. Z. (2011). Intermittent demand: Linking forecasting to inventory obsolescence. European Journal of Operation Research, 214(3), 606–615. doi: 10.1016/j.ejor.2011.05.018

• Van Der Auweraer, S., Boute, R. N., y Syntetos, A. A. (2019). Forecasting spare part demand with installed base information: A review. International Journal of Forecasting, 35(1), 181–196. doi: 10.1016/j.ijforecast.2018.09.002.

• Vasumathi, B. y Saradha, A. (2013). Forecasting Intermittent Demand for Spare Parts. International Journal of Computer Applications, 75(11), 12–16. doi: 10.5120/13154-0805.

• Walpole, R. E., Myers, R. H., Myers, S. L., y Ye, K. (2012). Probabilidad y estadística para ingeniería y ciencias. México: Pearson.

• Willemain, T.R., Smart, C. N., y Schwarz, H. F. (2004). A new approach to forecasting intermittent demand for service parts inventories. International Journal of Forecasting, 20(3), 375–387. doi: 10.1016/S0169-2070(03)00013-X.

• Williams, T.M. (1984). Stock Control with Sporadic and Slow-Moving Demand. Journal of Social Economics Research, 35, 939–948. doi: 10.1057/jors.1984.185.

• Xu, Q., N. Wang, y Shi, H. (2012). Review of Croston’s method for intermittent demand forecasting. 2012 9th International Conference on Fuzzy Systems and Knowledge Discovery: 1456–1460. doi:10.1109/FSKD.2012.6234258.

Published

2025-01-31

How to Cite

Montes de Oca-Sánchez, E., & Loza-Hernández, L. (2025). Comparison of time series forecasting methods for automotive spare parts demand. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (94). https://doi.org/10.33064/iycuaa2025945451