Video preprocessing to improve animal tracking
DOI:
https://doi.org/10.33064/iycuaa2025956465Keywords:
Video processing, RGB color space, red lighting, animal tracking, morphological filters, object detectionAbstract
This work presents a video processing algorithm designed to enhance quality and facilitate tracking of a rat in a red-lit environment, optimized for Fiji software. The algorithm uses techniques such as general and morphological filters, dimension changes, frame subtraction, and thresholding. These techniques were chosen for their effectiveness in reducing noise and highlighting objects under red light. Additionally, adjustments to the experimental environment are proposed to improve contrast and tracking accuracy.
Downloads
References
• Choi, Y.-J., Lee, Y.-B., & Cho, W.-D. (2009). Color correction for object identification from images with different color illumination. En Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC (pp. 1598-1603). IEEE. https://doi.org/10.1109/NCM.2009.87
• Cucchiara, R., Grana, C., Piccardi, M., Prati, A., & Sirotti, S. (2001). Improving shadow suppression in moving object detection with HSV color information. En Proceedings of the 2001 IEEE Intelligent Transportation Systems Conference (ITSC 2001) (pp. 334-339). IEEE. https://doi.org/10.1109/ITSC.2001.948679
• Fortier, P. (2022). Deep learning-based object detection and scene perception under bad weather conditions. Electronics, 11(4), 563. https://doi.org/10.3390/electronics11040563
• González, R., & Woods, R. (2017). Digital image processing (Global ed., 4th ed.). Pearson.
• Jeong, H.-J., Park, K.-S., & Ha, Y.-G. (2018). Image preprocessing for efficient training of YOLO deep learning networks. En Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 635-637). IEEE. https://doi.org/10.1109/BigComp.2018.00113
• Schindelin, J., Arganda-Carreras, I., Frise, E., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019
• Voss, K. (2012). Discrete images, objects, and functions in Zn. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46779-0
• Xu, X., Wang, S., Wang, Z., Zhang, X., & Hu, R. (2021). Exploring image enhancement for salient object detection in low light images. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(1s), 1-19. https://doi.org/10.1145/3414839
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Liliana Saucedo-Díaz, José Antonio Guerrero-Díaz De León, Jorge Eduardo Macías-Díaz

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Las obras publicadas en versión electrónica de la revista están bajo la licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional (CC BY-NC-SA 4.0)