Video preprocessing to improve animal tracking

Authors

DOI:

https://doi.org/10.33064/iycuaa2025956465

Keywords:

Video processing, RGB color space, red lighting, animal tracking, morphological filters, object detection

Abstract

This work presents a video processing algorithm designed to enhance quality and facilitate tracking of a rat in a red-lit environment, optimized for Fiji software. The algorithm uses techniques such as general and morphological filters, dimension changes, frame subtraction, and thresholding. These techniques were chosen for their effectiveness in reducing noise and highlighting objects under red light. Additionally, adjustments to the experimental environment are proposed to improve contrast and tracking accuracy.

Downloads

Download data is not yet available.

Author Biographies

Liliana Saucedo-Díaz, Autonomous University of Aguascalientes

Department of Computer Science, Center for Basic Sciences, Autonomous University of Aguascalientes.

José Antonio Guerrero-Díaz De León, Autonomous University of Aguascalientes

Department of Statistics, Center for Basic Sciences, Autonomous University of Aguascalientes.

Jorge Eduardo Macías-Díaz, Autonomous University of Aguascalientes

Department of Mathematics and Physics, Center for Basic Sciences, Autonomous University of Aguascalientes.

References

• Choi, Y.-J., Lee, Y.-B., & Cho, W.-D. (2009). Color correction for object identification from images with different color illumination. En Proceedings of the 2009 Fifth International Joint Conference on INC, IMS and IDC (pp. 1598-1603). IEEE. https://doi.org/10.1109/NCM.2009.87

• Cucchiara, R., Grana, C., Piccardi, M., Prati, A., & Sirotti, S. (2001). Improving shadow suppression in moving object detection with HSV color information. En Proceedings of the 2001 IEEE Intelligent Transportation Systems Conference (ITSC 2001) (pp. 334-339). IEEE. https://doi.org/10.1109/ITSC.2001.948679

• Fortier, P. (2022). Deep learning-based object detection and scene perception under bad weather conditions. Electronics, 11(4), 563. https://doi.org/10.3390/electronics11040563

• González, R., & Woods, R. (2017). Digital image processing (Global ed., 4th ed.). Pearson.

• Jeong, H.-J., Park, K.-S., & Ha, Y.-G. (2018). Image preprocessing for efficient training of YOLO deep learning networks. En Proceedings of the 2018 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 635-637). IEEE. https://doi.org/10.1109/BigComp.2018.00113

• Schindelin, J., Arganda-Carreras, I., Frise, E., et al. (2012). Fiji: An open-source platform for biological-image analysis. Nature Methods, 9(7), 676–682. https://doi.org/10.1038/nmeth.2019

• Voss, K. (2012). Discrete images, objects, and functions in Zn. Springer Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-46779-0

• Xu, X., Wang, S., Wang, Z., Zhang, X., & Hu, R. (2021). Exploring image enhancement for salient object detection in low light images. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 17(1s), 1-19. https://doi.org/10.1145/3414839

Published

2025-05-30

How to Cite

Saucedo-Díaz, L., Guerrero-Díaz De León, J. A., & Macías-Díaz, J. E. (2025). Video preprocessing to improve animal tracking. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (95), e6465. https://doi.org/10.33064/iycuaa2025956465

Issue

Section

Artículos de Investigación

Categories