Fenton and electro Fenton process assisted with chelating agent for ivermectin removal

Authors

DOI:

https://doi.org/10.33064/iycuaa2025957175

Keywords:

chelating agent, electrochemical oxidation, pharmaceutical drugs, emergent pollutants, stainless steel electrodes

Abstract

Ivermectin is an antiparasitic drug that has increased in use during the COVID-19 pandemic as part of a provisional treatment and it has been detected in wastewater systems. The AOPs applied to remove drugs have proven to be efficient. Using a Box-Behnken experimental design, the optimal conditions of the electro Fenton process with stainless steel (anode) and stainless steel coated with activated carbon (cathode) for removing ivermectin in wastewater were obtained. The optimized reagent concentrations are 71.7 mg/L FeSO4, 80 mg/L H2O2, 99 mg/L citric acid, and 13.74 mA/cm² current density. The optimization of the electro Fenton process achieves 87% removal of the drug. Adding 0.5 g of NaCl as a supporting electrolyte allows good management of the current intensity but implies an excessive increase in chlorides.

Downloads

Download data is not yet available.

Author Biographies

Víctor Ángeles-De la Luz, Jocotitlán University of Technology and Higher Education

Chemical Engineering Division

Rocío Girón-Navarro, Autonomous University of the State of Mexico

Inter-American Institute of Water Technology and Science (IITCA)

Ivonne Linares-Hernández, Autonomous University of the State of Mexico

Inter-American Institute of Water Technology and Science (IITCA)

Verónica Martínez-Miranda , Autonomous University of the State of Mexico

Inter-American Institute of Water Technology and Science (IITCA)

Luis Antonio Castillo-Suárez, Tecnológico de Estudios Superiores de Tianguistenco

Academic Support and Development Subdirection, National Technological Institute of Mexico

Fortunata Santoyo-Tepole, Instituto Politécnico Nacional

National School of Biological Sciences, Lázaro Cárdenas Professional Unit

References

• Abd El-Aziz, T. M., & Stockand, J. D. (2020). Recent progress and challenges in drug development against COVID-19 coronavirus (SARS-CoV-2) - an update on the status. Infection, Genetics and Evolution, 83(April), 104327. doi:10.1016/j.meegid.2020.104327

• Albornoz, L. L., Soroka, V. D., & Silva, M. C. A. (2021). Photo-mediated and advanced oxidative processes applied for the treatment of effluents with drugs used for the treatment of early COVID-19: Review. Environmental Advances, 6(November), 100140. doi:10.1016/j.envadv.2021.100140

• Carelle, L., Waffo, M., Marie, J., Dikdim, D., Noumi, G. B., Marie, J., … Warad, I. (2023). Investigation on Tenofovir Removal from Water by Process : Optimization of the Mineralization using Box-Behnken Design, 13(6), 1–17.

• Chen, Y., Wang, A., Zhang, Y., Bao, R., Tian, X., & Li, J. (2017). Electro-Fenton degradation of antibiotic ciprofloxacin (CIP): Formation of Fe3+-CIP chelate and its effect on catalytic behavior of Fe2+/Fe3+ and CIP mineralization. Electrochimica Acta, 256, 185–195. doi:10.1016/j.electacta.2017.09.173

• Dal Bosco, S. M., Barbosa, I. M., Candello, F. P., Maniero, M. G., Rath, S., & Guimarães, J. R. (2011). Degradation of Ivermectin by Fenton and Photo-Fenton and Toxicity Test Using Daphnia similis. Journal of Advanced Oxidation Technologies, 14(2), 292–301. doi:10.1515/jaots-2011-0215

• Davarnejad, R., Zangene, K., Fazlali, A. R., & Behfar, R. (2017). Ibuprofen Removal from a Pharmaceutical Wastewater using Electro-Fenton Process : An Efficient Technique, 30(11), 1639–1646.

• Durán-Álvarez, J. C., Prado, B., Zanella, R., Rodríguez, M., & Díaz, S. (2023). Wastewater surveillance of pharmaceuticals during the COVID-19 pandemic in Mexico City and the Mezquital Valley: A comprehensive environmental risk assessment. Science of The Total Environment, 900, 165886. doi:10.1016/j.scitotenv.2023.165886

• Dziduch, K., Greniuk, D., & Wujec, M. (2022). The Current Directions of Searching for Antiparasitic Drugs. Molecules, 27(5), 1534. doi:10.3390/molecules27051534

• Ganzenko, O., Oturan, N., Sirés, I., Huguenot, D., van Hullebusch, E. D., Esposito, G., & Oturan, M. A. (2018). Fast and complete removal of the 5-fluorouracil drug from water by electro-Fenton oxidation. Environmental Chemistry Letters, 16(1), 281–286. doi:10.1007/s10311-017-0659-6

• Havlíková, L., Šatínský, D., & Solich, P. (2016). Aspects of decontamination of ivermectin and praziquantel from environmental waters using advanced oxidation technology. Chemosphere, 144, 21–28. doi:10.1016/j.chemosphere.2015.08.039

• Kumar, S. (2023). Environmental Contaminants and Their Impact on Wildlife. In M. I. Ahmad, M. Mahamood, M. Javed, & S. S. Alhewairini (Eds.), Toxicology and Human Health (pp. 3–26). Singapore: Springer Nature Singapore. doi:10.1007/978-981-99-2193-5_1

• Li, J., Li, C., de Oliveira dos Santos, N., Teixeira, L. A. C., & Campos, L. C. (2022). Removal of diethyltoluamide, paracetamol, caffeine and triclosan from natural water by photo-Fenton process using powdered zero-valent iron. Journal of Water Process Engineering, 48(May), 102907. doi:10.1016/j.jwpe.2022.102907

• Li, Y., Lin, R., Lv, F., Zhao, X., Yong, T., & Zuo, X. (2022). Tannic acid-Fe complex derivative-modified electrode with pH regulating function for environmental remediation by electro-Fenton process. Environmental Research, 204, 111994. doi:10.1016/j.envres.2021.111994

• Midassi, S., Bedoui, A., & Bensalah, N. (2020). Efficient degradation of chloroquine drug by electro-Fenton oxidation: Effects of operating conditions and degradation mechanism. Chemosphere, 260, 127558. doi:10.1016/j.chemosphere.2020.127558

• Paola, D. Di, Iaria, C., Marino, F., Gugliandolo, E., Piras, C., Crupi, R., … Peritore, A. F. (2022). Environmental Impact of Pharmaceutical Pollutants: Synergistic Toxicity of Ivermectin and Cypermethrin. Toxics, 10(7), 1–12. doi:10.3390/toxics10070388

• Partridge, L., Fuentealba, M., & Kennedy, B. K. (2020). The quest to slow ageing through drug discovery. Nature Reviews Drug Discovery, 19(8), 513–532. doi:10.1038/s41573-020-0067-7

• Sulik, M., Antoszczak, M., Huczyński, A., & Steverding, D. (2023). Antiparasitic activity of ivermectin: Four decades of research into a “wonder drug”. European Journal of Medicinal Chemistry, 261(September), 115838. doi:10.1016/j.ejmech.2023.115838

• Trovó, A. G., & Nogueira, R. F. P. (2011). Diclofenac abatement using modified solar photo-Fenton process with ammonium iron(III) citrate. Journal of the Brazilian Chemical Society, 22(6), 1033–1039. doi:10.1590/S0103-50532011000600005

• Varindani, A., Anantha Singh, T. S., Menon, P., & Nidheesh, P. V. (2022). Chelate-modified Electro-Fenton process for mixed industrial wastewater treatment. Environmental Technology (United Kingdom), 43(22), 3497–3506. doi:10.1080/09593330.2021.1923819

• Wang, Y., Gong, M., Wang, X., Peng, X., Wang, Y., Guan, J., … Zheng, Y. (2020). Efficient degradation of ivermectin by newly isolated Aeromonas taiwanensis ZJB-18,044. Biodegradation, 31(4–6), 275–288. doi:10.1007/s10532-020-09909-8

• Zarazúa-Morín(+), M. E., Alfaro-Cruz, M. R., & Torres-Guerra, L. M. (2024). Medicamentos y sus consecuencias como contaminantes emergentes. Revista Ciencia UANL, 27(123), 8–15. doi:10.29105/cienciauanl27.123-1

• Zarrouk, A., & Kaichouh, G. (2023). Analytical & Optimization of the Electro-Fenton Process for the Degradation / Mineralization Kinetics, 15(4), 251–263.

Published

2025-05-30

How to Cite

Ángeles-De la Luz, V., Girón-Navarro, R., Linares-Hernández, I., Martínez-Miranda , V., Castillo-Suárez, L. A., & Santoyo-Tepole, F. (2025). Fenton and electro Fenton process assisted with chelating agent for ivermectin removal. Investigación Y Ciencia De La Universidad Autónoma De Aguascalientes, (95), e7175. https://doi.org/10.33064/iycuaa2025957175

Issue

Section

Artículos de Investigación

Categories